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Critical flow solution to Gill’s model of rotating
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Gill’s semigeostrophic equations of one-layer, rotating channel hydraulics are exactly
solved at the critical section, for flows with a finite uniform potential vorticity (PV).
A detailed characterization of the critical flow at the sill is consequently obtained,
together with a simple, explicit expression for the associated mass transport, that
provides a direct extension of the well-known transport formula of zero-PV theory.

The dependence of the mass transport on the PV, for a given average flow energy,
is found to be non-monotonic. In particular, the transport increases when the PV is
raised from zero, attaining a maximum value that can be up to twice those predicted
by the zero-PV theory. This suggests that, contrary to common belief, finite-PV effects
may be important in determining the mass transport in real oceanic outflows.

1. Introduction
In spite of their limitations, single-layer, reduced-gravity models have proven very

useful in the characterization of real oceanic ouflows, providing the basis for most
of the analytic understanding achieved in the field. Reference steady models are that
of Whitehead, Leetma & Knox (1974, referred to as WLK hereafter), that assumes
zero potential vorticity (PV), and the model by Gill (1977), that allows for a finite,
uniform PV. The former model leads to a simple formula for transport in a critical
flow, which has often been used to obtain ‘zeroth-order’ estimates of the mass flux
in oceanic straits that are believed to be hydraulically controlled (see e.g. Whitehead
1989, 1998). A corresponding formula for the finite-PV case is lacking, since in its
usual formulation the Gill model leads to high-order algebraic equations, that prevent
an analytic characterization of the flow.

A common statement about transport in finite-PV theory is that it is generally
smaller than that predicted by the WLK formula. The origin of this belief can be
traced back to works by Shen (1981) and Whitehead (1989), that show, among other
things, a weakly decreasing dependence of transport on PV. Those works, however,
explored a limited range of parameters, and so the generality of the conclusions on
transport they have prompted might be questionable. Besides, there appears to be no
clear physical reason why a finite PV should lead to a decrease of the mass transport.

In the present work, we shall gain further insight into the effect of a finite PV, by
exploiting the fact that, for an appropriate choice of the upstream flow invariants,
the semigeostrophic equations can be exactly solved at the channel sill. This allows
us to give an analytic characterization of attached and detached critical flows at the
sill, and to derive simple, exact expressions for the associated mass transports. These
expressions directly extend the WLK formulae to flows with a finite PV, and point to
a richer range of behaviours than previously thought.
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Figure 1. Sketch of the problem geometry: (a) a top view of the channel, showing the chosen
(x, y) coordinate system, with the x-axis pointing downstream; (b) a side view of the bottom
topography, which only varies along x. The wall at y = −w (y = w) is denoted as eastern
(western) throught the paper, following a notation by Killworth (1992). Values at the eastern
(western) wall are denoted by a minus (plus) subscript.

The paper is organized as follows. Section 2 gives the basic equilibrium equations.
In § 3, these equations are explicitly solved at the sill for a critical flow, and the
solutions are analysed in a normalized energy–PV space, in which different flow
regimes are easily identified. Exact expressions for the corresponding mass transports
are then derived in § 4, while the main results are summarized and further discussed
in § 5.

2. Basic equations
We consider steady, reduced-gravity shallow-water flows, in a rectangular, rotating

channel, bounded by rigid walls at y = ±w (figure 1 gives a sketch of the problem
geometry, together with related definitions). The semigeostrophic approximation is
assumed to hold (see Gill 1977 and Pratt 1983 for details). As a consequence, the
equilibrium problem reduces to a single second-order PDE for the fluid depth h,

g

f

∂2h

∂y2
− qh = −f, (2.1)

where f is twice the rotation frequency, g the reduced gravity, and q the constant,
positive PV value. Integration of (2.1), and use of geostrophic balance, yields
expressions for h and for the along-channel velocity u, that we write as

u√
gH

=
1

C

[(
1 − h̄

H

)
sinh(y/LR) +

ū√
gH

cosh(y/LR)

]
, (2.2)

h

H
= 1 − 1

C

[
ū√
gH

sinh(y/LR) +

(
1 − h̄

H

)
cosh(y/LR)

]
. (2.3)
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Here H ≡ f/q , LR ≡
√

gH/f is the Rossby deformation radius associated with H ,
C ≡ cosh(w/LR), and the two free functions of x resulting from the integration of (2.1)
have been expressed in terms of the averages ū and h̄ (unless otherwise specified, here
we adopt the notation F̄ ≡ (F + + F −)/2, and �F ≡ F + − F − ). Evaluating (2.2)–(2.3)
at the walls, we compute

�h = −
(

H

g

)1/2

2T ū, (2.4)

h̄ = H −
(

H

g

)1/2
1

2T
�u, (2.5)

where T ≡ S/C, S ≡ sinh(w/LR). Note that if �u = 0, h̄ ( = H ) is the depth at y = 0.
The corresponding velocity (depth −H ) field is symmetric (antisymmetric) with respect
to y = 0. On the other hand, h̄ <H if �u > 0, i.e. if the flow speed is larger at the
western wall.

The equilibrium system is closed by expressions for two of the flow invariants: the
average Bernoulli function B̄ ,

B̄ = gh̄ + gb(x) +
gH

2
T 2

(
1 − h̄

H

)2

+
1

2
ū2, (2.6)

and the along-channel mass transport Q,

Q = 2LRT h̄ū. (2.7)

For given values of q , B̄ and Q, and a given topography b(x), ū(x) and h̄(x) may be
computed from (2.6)–(2.7) by solving a quartic algebraic equation at any x.

In order to determine solutions that correspond to hydraulically controlled flows,
one has to free one of the parameters, so that criticality at the sill location may be
imposed. This can be done in several ways. In Pratt (1983), for example, the value of
the sill height is not prescribed, but determined as a part of the solution, by imposing
a semigeostrophic Froude number equal to unity at the sill. Different choices of the
flow invariants are made in Gill (1977), and in more recent works by Helfrich &
Pratt (2003) and Whitehead & Salzig (2001, referred to as WS hereafter). In all cases,
quartic algebraic equations need to be solved to characterize the flow at the critical
section. Yet another approach is considered in the next section, which allows us to
completely solve the equations at the sill.

3. Solution for a critical flow
We assume a given sill height bc = b(xc) and a given B̄ , leaving the mass transport

unspecified. We then impose criticality, by taking ∂x of (2.6) and (2.7), evaluated at
the sill, where ∂xb = 0, and setting to zero the determinant of the coefficient matrix
of the resulting linear homogeneous system of equations for ∂xh̄|xc

and ∂xū|xc
. This

yields

ū√
gH

=

(
h̄

H

)1/2 (
1 − T 2 + T 2 h̄

H

)1/2

. (3.1)
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Placing (3.1) in (2.6), evaluated at the sill, and solving the resulting quadratic equation,
finally gives h̄ in terms of the parameters of the problem:

h̄

H
=

3

4S2

(
−1 +

√
1 − 8

9
S4 +

16

9
S2C2

�z

H

)
, (3.2)

where �z ≡ B̄/g−bc. Expressions (2.2)–(2.3), together with (3.1)–(3.2), give a complete
description of attached critical flows at the sill. It is seen from (3.2) that h̄/H increases
monotonically when �z is increased. Correspondingly (see (2.5)), �u decreases,
vanishes for �z/H = �z/h̄ =3/2, and becomes negative for larger values of the
energy, yielding a larger flow speed at the eastern wall. We do not know if flows with
negative �u have been experimentally observed.

As shown by Gill (1977), attached flow requires that h± > 0. Since �h < 0 for ū > 0,
it is sufficient that h+ > 0, which, using (2.3) and (3.1), is seen to be equivalent to

h̄

H
>

T 2

1 + T 2
. (3.3)

Using (3.2), this translates into

�z

H
> 1 − 1

(1 + T 2)2
. (3.4)

Condition (3.4) corresponds to the existence of a threshold in B̄ above which solutions
are attached to both walls. For lower values of the energy, solutions are detached
from the western wall, and a separate treatment is required (see § 3.1).

The information about critical flow solutions we have gained may be further
organized by noticing that these solutions only depend on the two non-dimensional
quantities �z/H and w/LR . This suggests the introduction of the following normalized
energy and PV:

�z∗ =
�z

w2f 2/g
, q∗ =

q

g/(w2f )
, (3.5)

in terms of which

�z

H
= �z∗q∗,

(
w

LR

)2

= q∗. (3.6)

As shown in figure 2, different flow regimes are easily identified in the (�z∗, q∗) space
(note that in this space curves of constant �z/H are equilateral hyperbolas). The
curve C1, approaching the hyperbola �z/H = 3/4 (dotted) at large q∗, corresponds
to the threshold (3.4); below (above) C1 lie critical flows detached (attached) at the
sill. On the other hand, the curve C3, corresponding to the hyperbola �z/H = 3/2,
separates flows with �u > 0 (below) from those with negative �u (above). Inside
the region between C1 and C3 another transition occurs, marked by the curve C2.
This curve separates flows with convex depth profiles (below) from flows with depth
profiles that become concave in the eastern part of the channel (above). The transition
corresponds to the violation of the condition h/H � 1 ∀y, which implies both a convex
depth profile (see (2.1)) and a monotonically increasing profile of the Froude number
F = u/(gh)1/2. Above C3 one finds attached flow solutions with �u < 0, that always
have concave depth profiles near the eastern wall and tend to develope non-monotonic
profiles of F .

Explicit solutions, for flows with �z∗ = 1.5 and q∗ = 0.2, 0.5, 0.9, and 1.4, are shown
in figure 3. The value q∗ = 0.2 corresponds to a flow just beyond the attached flow
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Figure 2. Normalized energy(y)–PV(x) diagram for flow solutions at the critical section. The
curves C1–C3 correspond to transitions in flow properties that are detailed in the text.
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Figure 3. Profiles of (a) h/H , (b) u/
√

gH , and (c) F , at the sill section, for attached critical
flows with �z∗ = 1.5 and q∗ = 0.2 (solid), 0.5 (dotted), 0.9 (dashed), 1.4 (dot-dashed).
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boundary, as is seen both from figure 2 and from the lowest depth profile in figure 3(a).
On the other hand, q∗ = 0.5 corresponds to a flow close to the transition marked by
the curve C2 in figure 2. It is seen from figure 3(a) that for this flow ∂2

yh is close to
zero, and h/H close to unity, near the eastern wall, in agreement with the preceeding
analysis. The flow with q∗ = 0.9 is close to the hyperbola C3 in figure 2, and has an
almost symmetric velocity profile (see figure 3b), while the flow with q∗ = 1.4 has a
negative �u (top profile in figure 3b), as expected. The latter two flows have concave
depth profiles in the eastern part of the channel, and non-monotonic F profiles (see
figure 3c).

To conclude this scrutiny of the attached flow solutions, we notice that condition
(3.3), together with (3.1), implies that the flow is unidirectional at the sill, as it should
(Gill 1977).

3.1. Detached flow solutions

We now consider solutions corresponding to flows that are detached at the sill. These
solutions are still quite mysterious objects: although their existence is predicted by the
semigeostrophic theory, both laboratory experiments (WLK; Shen 1981; Pratt 1987)
and numerical simulations using the full shallow water equations (Pratt, Helfrich &
Chassignet 2000) have failed to produce them, for reasons that are not well understood.

As noted by several authors, the basic equations are unaffected by the introduction
of a shifted y coordinate that goes from −wc to wc, with 2wc the width of the flow
at the critical section. Consequently, the attached flow solution previously obtained
continues to hold, with w replaced by wc in the argument of the hyperbolic functions
(in particular, we write Tc ≡ T (wc)). An additional constraint is now given by the fact
that h+ =0. As noted in Pratt & Armi (1987), this implies that h−, h̄ and �h are
constant in the detached flow region. Evaluating (2.3) at the eastern wall and using
(3.1), gives

h̄

H
=

T 2
c

1 + T 2
c

, (3.7)

which shows that h̄ <H , and consequently �u > 0 for a detached flow. Placing (3.7)
in (3.2) yields

�z

H
= 1 − 1(

1 + T 2
c

)2
, (3.8)

which can be used to compute the width of the flow at the critical section, for a given
ratio �z/H . It follows from (3.7)–(3.8) that

h̄

H
= 1 −

√
1 − �z

H
. (3.9)

Substituting this expression and the corresponding expression for ū in (2.2)–(2.3) gives
the complete detached flow solution at the sill. At this point, however, one should
address the realizability of such solutions. Since, according to (3.8), the flow width
goes to zero when �z does, it would seem that the existence of a flow detached at the
sill simply requires �z > 0, and, consequently, that the whole region below the curve
C1 in figure 2 may be accessed. As will be shown in the Appendix, this is not always
the case. The picture is more complex, and, in some cases, the actual region of the
parameter space available to separated flow solutions may be much smaller.
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4. Critical transport
Placement of (3.1) in (2.7) yields the mass transport corresponding to the critical

flow solution we have derived. In non-dimensional form, this is

Q∗
A =

T

q∗2

(
h̄

H

)3/2 (
1 − T 2 + T 2 h̄

H

)1/2

, (4.1)

with

Q∗
A ≡ Q

2f 3w4/g
. (4.2)

Equation (4.1), with h̄/H given by (3.2), provides a simple, exact expression for the
critical transport for attached flows. The right-hand side of (4.1) only depends on
q∗ and �z∗, and is clearly a monotonically increasing function of �z∗. The general
dependence on q∗ is more difficult to assess, but the small and large q∗ behaviours are
readily obtained. In the vanishing q∗ limit, the argument of the hyperbolic functions
is small, so that C � 1 and S � T � q∗1/2. One can then set the last term in (4.1) to
unity and expand the square root in (3.2) to recover the zero-PV formula of WLK,
which in our notation reads

Q∗
0A =

(
2
3

)3/2 [
�z∗ − 1

2

]3/2
. (4.3)

Note that small q∗ may be obtained in three different ways: in the narrow channel
limit (w → 0), in the small rotation limit (f → 0), and in the small PV limit (q → 0). We
have thus shown that the WLK formula holds in all three limits. This corroborates
numerical findings of Borenäs & Pratt (1994) (see their figures 9 and 10), showing
that predictions based on zero-PV theory are very close to those of finite-PV theory
in the case of very narrow channels. In the limit of large q∗, S and C are both large,
T � 1, and (4.1) reduces to

QA � 2g

f
h̄

2
, (4.4)

in agreement with previous work ((4.4) can be recovered by taking T = 1 in equation
(4.2) of Pratt 1983, and taking the normalizations into account). It follows from (4.4)
and (3.2) that Q∗

A approximately decays as 1/q∗ at large q∗.
An expression for transport in detached flows is obtained from (4.1) by replacing

T with Tc, and using (3.7) (to eliminate the dependence on Tc) and (3.9). We find

Q∗
D =

1

q∗2

(
1 −

√
1 − �z∗q∗

)2

. (4.5)

At small q∗, this reduces, as it should, to the corresponding zero-PV, WLK expression,

Q∗
0D = 1

4
�z∗2

. (4.6)

Since the ratio between (4.5) and (4.6) is a monotonically increasing function of q∗,
the effect of finite PV (for �z∗ in the detached flow range) is that of increasing the
transport. The maximum ratio Q∗

D/Q∗
0D is obtained at the threshold (3.4) (at small

�z∗, this approximately coincides with �z∗q∗ =3/4, yielding Q∗
D/Q∗

0D � 16/9).
To complete the picture, in figure 4 we plot the critical mass transport, normalized

with the zero-PV values, as a function of q∗, for �z∗ = 3, 2, 1, and 1/4. The two
top curves, corresponding to the smaller values of �z∗, are constructed by using the
detached flow expression (4.5) at small values of q∗, and expression (4.1) for values of
q∗ beyond the transition to attached flow solutions (the two expressions join smoothly
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Figure 4. Critical mass transport, normalized with the zero-PV values, as a function of q∗,
for �z∗ = 1/4 (solid), 1 (dotted), 2 (dashed), 3 (dot-dashed). Also shown is the transport bound
Q∗

e

/
Q0D given by (5.3) (crosses), for the case �z∗ = 1/4. The figure shows that transport, for

a given �z∗, is a non-monotonic function of the PV. Transport maxima lie on �z∗q∗ = 1.

at the transition). The figure shows that the transport increases when q∗ is raised from
zero, reaches a maximum, and then slowly decreases at larger q∗. It is also apparent
that �z∗q∗ = 1 at transport maxima. This is found to be a general property: transport
maxima are always located on the hyperbola �z/H = 1, in the region where �u > 0
and the depth profiles are concave near the eastern wall. The maximum transport
values are seen to approach 2 at small values of �z∗ (and correspondingly large
values of q∗). This was to be expected, since for large q∗

Q∗
A � 1

2q∗2
=

1

2
�z∗2

(4.7)

at the points where �z/H = 1. The ratio between (4.7) and the zero-PV detached flow
expression (4.6) is exactly 2, showing that, for a given B̄ , transport in a flow with a
finite, constant PV can be up to twice that predicted by zero-PV theory. Finally, it
should be noted that the transports are always larger than, or of the order of, the
zero-PV transports when �z∗q∗ < 3/2, and become significantly lower only for values
of q∗ that correspond to flows well inside the region with �z∗q∗ > 3/2 (i.e. the region
of flows with negative �u).

5. Discussion
We have shown in this work that Gill’s semigeostrophic equations for rotating

channel hydraulics can be exactly solved at the sill for a critical flow, once the sill
height, the constant PV, and the average Bernoulli function B̄ (i.e. the average flow
energy) are prescribed. The choice of B̄ as an upstream flow parameter has proven to
be crucial: choosing a different flow invariant, such as the ψi parameter, used by Gill
(1977) to partition the left and right boundary layer flows, or the Bernoulli function
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on the eastern wall, used in Whitehead (2005), leads to high-order algebraic equations
that are only amenable to numerical investigation. As noted by a referee, this choice
may not be convenient from the observation point of view, since it requires that one
measures B on both sidewalls. However, it has the great advantage of permitting an
analytic characterization of attached critical flows at the sill section, and, in the case of
detached flows, in the whole detached flow region. This choice also leads naturally to:

(i) the definition of a two-dimensional parameter space (the (�z∗, q∗) space of
figure 2), in which properties of the critical flow solutions are easily assessed;

(ii) the derivation of simple, exact expressions for the critical mass fluxes, that
directly extend the zero-PV formulae, and provide new insights into the effect of a
finite PV on transport.

The results on transport, however, need to be further discussed in the context of
previous work, since, at first sight, they appear to contrast with established results in
the field. For example, the fact that transports can be up to twice those of the zero-PV
theory seems to contradict the bound on transport of Killworth & McDonald (1993,
referred to as KM hereafter), which in our context is

Q �
g

2f

(
Bm

g
− bc

)2

≡ QKM, (5.1)

with Bm the maximum of B along streamlines that connect to the upstream basin.
As noted in Pratt (2004), this result may be linked to the zero-PV theory as follows.
Given a flow with an arbitrary B , one can pick the maximum value Bm and ask what
the transport would be for a zero-PV flow with B = Bm, and depth vanishing at the
western wall. According to (4.6), this transport is exactly given by (5.1). Thus, for
given Bm, the zero-PV case does set a bound on finite-PV transport. On the other
hand, if we compare flows with the same B̄ , (5.1) will give a larger bound when the
PV is finite, since in this case B is non-constant, and Bm > B̄ . Due to the quadratic
dependence of the KM bound on Bm, a moderate ratio Bm/B̄ could be sufficient to
give a significant increase in transport with respect to the zero-PV case, consistently
with the findings of the previous section. To be more definite, consider the quantity

Qe ≡ g

2f

(
B−

g
− bc

)2

, (5.2)

obtained by replacing Bm with B− in (5.1). Clearly, Qe � QKM . Using the fact that B− −
B̄ = qQ/2 and the definitions of �z∗ and q∗, and normalizing Qe as in (4.2), yields

Q∗
e = 1

4

(
q∗Q∗ + �z∗)2

. (5.3)

It immediately follows from (5.3) that

Q∗
e − Q∗ = 1

4

(
q∗Q∗ − �z∗)2

+ (q∗�z∗ − 1)Q∗, (5.4)

showing that Q∗
e >Q∗ at the transport maxima, and, a fortiori, for larger values

of q∗. Direct computation of Q∗
e , for the values of �z∗ of figure 4, shows that the

bound holds for any value of q∗ (values of Q∗
e/Q

∗
0D for the case �z∗ = 1/4 are shown

as crosses in figure 4). This gives us sufficient confidence that our conclusions on
transport are consistent with the KM bound, as they should be.

Another aspect of our results that appears to contradict common belief is the fact
that maximum transport, for a given �z, is achieved at finite PV. Even in this case,
however, the contradiction is only apparent. Let us consider, for example, the results
of some recent works by Whitehead and collaborators (WS; Whitehead 2005), in
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Figure 5. Contour lines of the normalized transport Q∗ (solid lines), and of �z∗
W =�z∗+q∗Q∗

(dashed lines), in the normalized energy–PV space (Q∗ increases in the positive �z∗ direction).
For a given channel geometry, and given values of f and g, the contours of constant �z∗

W

are also contours of constant B− (the Bernoulli function at the right-hand wall). Note that
the transport decreases monotonically along these contours, in agreement with the findings of
Whitehead & Salzig (2001) and Whitehead (2005).

which B− is specified as one of the upstream flow parameters. It is shown in these
works (see e.g. figure 4 of WS), that for a given value of B− (or of closely related
quantities), the transport is a decreasing function of the PV. How does this result
compare with our figure 4? The answer is given in figure 5, which shows contour
lines of the normalized transport Q∗, and of a parameter

�z∗
W ≡ �z∗ + q∗Q∗, (5.5)

in the plane (�z∗, q∗). The parameter �z∗
W , used in Whitehead (2005), is obtained by

replacing B̄ by B− in the definition of �z. Therefore, for given geometrical parameters,
contours of constant �z∗

W are also contours of constant B−, and, because of (5.3), of
constant Q∗

e . It is seen from the figure that these contours always cross the contours of
constant Q∗ with a negative slope. Since Q∗ is an increasing function of �z∗, it follows
that the transport along lines of constant �z∗

W is a monotonically decreasing function
of the PV, in agreement with the results of Whitehead and collaborators. On the other
hand, it is clear from figure 5 that, for fixed �z∗, the mass transport is a non-monotonic
function of the PV: it first increases and then decreases with q , in agreement with
figure 4. The key point, again, is the choice of the upstream invariants: since the
relation between these quantities (�z, �zW , Gill’s ψi , etc.) involves the PV, it is to be
expected that different choices may produce different dependences of transport on PV.

The previous results suggest that finite-PV may affect the estimates of transport
in real oceanic straits more than it is commonly thought. This could be relevant to
the outflows examined in Whitehead (1989) (Denmark Strait, Iceland-Faroe Channel,
Ceara Rise, and Vema Channel), that have small values of �z∗. Previous works on
these straits have mostly concentrated on the effect of the topography representation,
which is certainly crucial. An example is the work by Killworth (1992), that used
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parabolic, or V-shaped sills, to improve on the original calculations by Whitehead
(1989), based on a rectangular sill, which largely overestimated the observed fluxes
(see e.g. table 1 in Pratt 2004). In two cases (Denmark Strait, Iceland-Faroe Channel),
however, Killworth’s corrections lead to values of transport considerably smaller than
the observed ones. This raises the possibility that for these straits, taking both the
sill topography and finite PV into account might lead to better agreement with the
observations. A recent work by Nikolopoulos et al. (2003) on the Denmark Strait
overflow seems to suggest that the inclusion of a finite, constant PV only leads to
small changes of the mass flux, with respect to the estimate based on the zero-PV
theory. This result, however, relies on solving the semigeostrophic equations for a
single value of the PV, and appears to leave room for further work on the subject.

It is a pleasure to thank Peter Killworth, Jack Whitehead, and Andrea Bargagli for
useful discussions. Insightful comments and suggestions by the referees are gratefully
acknowledged.

Appendix
In the detached flow region, h̄ is constant and (2.6) becomes a relation between

T (x) and the topography height b(x),(
T 2 − T 2

c

)2
= 2T 2

(
1 + T 2

c

)2 �b

H
, (A 1)

where �b ≡ bc − b(x), and we have used (3.7)–(3.8), together with h+ = 0. Let us now
evaluate (A 1) at the point x = xs , inside the obstacle range, where the flow separates
from the western wall. At x = xs , T = T (w) ≡ Tw , and (A 1) can be rewritten as
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=
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w
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T 2

w
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. (A 2)

Clearly, α � 1, the equality holding when the flow exactly separates at the sill. It
follows from (A 2) that α and Tc monotonically decrease if the separation point
moves upstream. Moreover, if

δ ≡ bc

(H/2) T 2
w

> 1, (A 3)

they will both vanish for some value of xs within the obstacle range. Since the
vanishing of Tc implies that of �z, this means that when (A 3) is satisfied, the entire
region below C1 in figure 2 is accessible. However, separation can only occur in a
limited range of upstream values of x, whose precise size will depend on the actual
shape of the obstacle. Clearly, if δ � 1, the separation point will remain close to the
critical section, no matter what the shape of the sill is. If, on the other hand, δ < 1,
separation can occur, in principle, at any x inside the obstacle range. In this case,
however, Tc, and consequently �z/H , will have non-zero minimum values, attained
when α = 1 − δ1/2 (i.e. when the separation occurs exactly at the left margin of the
obstacle). Consequently, for a given q∗, there will be a limited range of values of �z∗

in which separated solutions are possible. This range, normalized by its maximum
possible value, is readily computed as

R = δ1/2 2 + δ1/2T 2
w

2 + T 2
w

. (A 4)
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Note that R � 1 if δ � 1. On the other hand, for small values of δ, R � δ1/2, and
the region of the parameter space available to separated flow solutions is strongly
reduced. Using the definitions of H and q∗, δ can be rewritten as follows:

δ =
q∗

(tanh
√

q∗)2
bc

f 2w2/(2g)
. (A 5)

In the small-PV limit, which is relevant to the experiments by WLK and to some of
the experiments by Shen (1981), the dependence on q∗ approximately cancels out in
(A 5), and the range R becomes approximately proportional to 1/f . Thus, increasing f

progressively, as it is typically done in the experiments, would progressively reduce the
range in �z∗ in which separated solutions can be found. In such a situation, accessing
the region of detached flow solutions could require a fine tuning of the parameters,
that may be difficult to realize experimentally. This raises the possibility that, in some
cases, the inability to obtain separated flow solutions could be consequence of an
insufficient control on the path followed by the experiment in the (�z∗, q∗)-plane.
Whether this applies to the cited laboratory experiments is difficult to judge, but
seems worth further investigation.
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